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Abstract

The increasing incidence of Alzheimer’s disease (AD) has been leading towards a signifi-

cant growth in socioeconomic challenges. A reliable prediction of AD might be useful to miti-

gate or at-least slow down its progression for which, identification of the factors affecting the

AD and its accurate diagnoses, are vital. In this study, we use Genome-Wide Association

Studies (GWAS) dataset which comprises significant genetic markers of complex diseases.

The original dataset contains large number of attributes (620901) for which we propose a

hybrid feature selection approach based on association test, principal component analysis,

and the Boruta algorithm, to identify the most promising predictors of AD. The selected fea-

tures are then forwarded to a wide and deep neural network models to classify the AD cases

and healthy controls. The experimental outcomes indicate that our approach outperformed

the existing methods when evaluated on standard dataset, producing an accuracy and f1-

score of 99%. The outcomes from this study are impactful particularly, the identified features

comprising AD-associated genes and a reliable classification model that might be useful for

other chronic diseases.

Introduction

Alzheimer’s disease (AD) is the most prevalent kind of dementia, accounting for 60–70% cases

of dementia [1]. It impairs memory, thinking, conduct, and overall capacity to do everyday

tasks such as eating and bathing etc. The illness can generally be classified into two subcatego-

ries: early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) [2].

The EOAD is almost entirely a genetic disease with heritability ranging from 92% to 100% [3]

where the affected first-degree relatives account for 35% to 60% of EOAD patients. Usually,

the EOAD patients experience their first symptoms between 30 and 65 years of age, with the

majority of EOAD patients diagnosed between the ages of 45 and 60 years [4]. In contrast to

EOAD, the LOAD affects elderly people (usually over 65 years of age) and has a 90–95% occur-

ring of the AD in overall cases [5]. LOAD appears to be a more complicated illness induced by
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genetic as well as the environmental factors. For instance, Genome wide associations study

(GWAS) of AD reported 44 single-nucleotide polymorphisms (SNP) associated with the

LOAD [6]. Likewise, Apolipoprotein E (APOE e4) has been commonly Identified as a risk fac-

tor to LOAD [7]. While these works identify some important factors associated with the

LOAD, the genetic architecture of the disease and its prediction remains a mystery. Due to

lacking cure for AD, identifying the specific genes that are mainly involved in the illness’s pro-

gression, will help physicians for the early diagnosis of disease, and therefore will help in moni-

toring and prevention of the disease.

Recently, variety of computational strategies have been proposed for improving the diagno-

sis or identification of novel gene candidates associated to AD. For instance, GWAS investiga-

tions [8] are a well-recognized method for finding genomic areas of interest for many

common complicated illnesses and phenotypes. The experiments are distinguished by analys-

ing information acquired from large population size comprising high number (i.e., over 100K)

of loci (i.e., SNPs) across the human genome. A variation at specific loci could lead to changes

in biological function which may cause an illness. Such variation can be detected by analysing

genotypes produced from people with and without the characteristic of interest [9].

The literature addresses a variety of approaches for assessing SNP susceptibility in GWAS

where each SNP is evaluated individually [10] however, it is identified that only a small pro-

portion of the SNPs have major impacts on the complicated disease features while, majority of

the SNPs indicated low penetrance individually [11]. On the other hand, many prevalent

human illnesses have been linked to intricate interactions between numerous SNPs and is

referred to as multi-locus interactions [12].

In addition to conventional approaches for the GWAS analysis, Machine Learning (ML)

algorithms have been utilised for identifying the SNPs that are associated to a variety of ill-

nesses. Particularly, the ML approaches proved to be resilient when dealing with solving the

non-linear problems involving high dimensional datasets similar to GWAS data used in this

study. In the literature, ML techniques have been used in three major areas in the domain of

genome-wide association studies [13]. Firstly, to develop classification models to distinguish

between cases of disease of interest and healthy controls [14–17]. Secondly, to develop ML

models to discover new genetic markers associated with a particular disease such as AD [18–

20]. Thirdly, ML has been utilised to find the SNPs interactions that influence the emergence

of common human diseases [21–23]. The fundamental aim for using ML in these studies is to

generate prediction models that maximise the classification accuracy between cases and con-

trols. However, the computational barrier of having hundreds of thousands of markers from

GWAS data while fewer samples (i.e., data record) remains a challenge [13].

This problem has been resolved using effective feature selection methods aiming to identify

the most informative variables from the available feature space. For instance, study [24] inves-

tigated the feasibility of utilising random forests (one of popular ML algorithm) for feature

selection and classification on GWAS data. The findings from this work suggest that feature

selection prior to data partitioning into training and testing sets, produced a model which is

susceptible to overfitting. In [25], the study proposed iGnet, a deep learning model for AD

classification that involves two datasets comprising MRI and genetic information. Their model

combines computer vision approach to analyse the MRI scans and natural language processing

to analyse the genetic data. The proposed method was evaluated over ADNI dataset indicating

83.78% classification accuracy while employing MRI data with selected SNPs from chromo-

some 19. Similarly, Sethi et al. [26] presents a ML model comprising convolution neural net-

work (CNN) for automated feature extraction and support vector machines (SVM) for

classification task. The main focus of the study was to develop a hybrid ML model for
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classification of AD using MRI data from ADNI. The hybrid model achieved better accuracy

(i.e., 88%) when compared with CNN alone, with an increment of 2.9% in the model accuracy.

While the aforementioned works highlight the associations between genetic markers and

AD, there are several limitations with these approaches. Firstly, conventional methods are

impractical to handle the non-linearity of the complex relationships (within the GWAS data-

set) for the prediction and classifications of AD. Secondly, feature selection and optimization

in the existing works, is not performed in a way to be useful for the human experts (e.g., physi-

cians, health professionals etc.) to understand the significant set of SNPs/features among the

large amount of feature space. Likewise, the use of deep learning models limits the explain-

ability of ML model which is not understandable by human experts.

In contrast, we propose novel wide and deep learning-based approaches to classify Cogni-

tively Normal (CN) and AD individuals. In the first step, we conduct an association test to

select the most signification SNPs influencing the disease, followed by a hybrid feature selec-

tion approach to reduce the number of features substantially. We then use a newly proposed

approach of neighbouring SNPs selection, to produce a final set of SNPs which are then used

for the training of wide and deep learning classification models for CN and AD subjects.

Major contribution of the proposed work include:

a. Developing a hybrid dimensionality reduction approach towards identification of the most

distinguishing features, leading to robust classification performance.

b. Propose a neighbour SNPs selection approach to test the impact of neighbour SNPs over

the classification accuracy.

c. Propose a wide and deep learning models for classification of individuals into CN and AD.

d. Extract human understandable rules from the trained ensemble model, to serve for the

machine learning model’s interpretability.

Remaining of this manuscript is organised as follows. Section 2 presents the materials and

methods proposed in this study. Section 3 comprises the experimental design while Section 4

entails the results corresponding to the experimental design along with the discussions about

the study outcomes.

Materials and methods

The proposed approach for AD classification entails a composite of data processing, feature

selection, and machine learning algorithms. We first perform quality control to ensure only

high-quality features and samples are included. In the second step, logistic regression is used

to test the association of each feature with AD. The processed dataset is then forwarded for fea-

ture selection using a hybrid approach comprising PCA and Boruta algorithms. The set of

identified features are then used to train ML models for AD classification. Fig 1 shows the

overall methodology of proposed AD classification where detailed implementation for each

component is presented as follows.

Dataset

Dataset used in this study is obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database. The ADNI [27] was launched in 2003 as a public-private partnership with

primary objective to test whether the serial magnetic resonance imaging (MRI), positron emis-

sion tomography (PET), other biological markers, and clinical and neuropsychological assess-

ment, can be combined together to measure the progression of mild cognitive impairment and

early AD.
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The ADNI database comprises sets of variables including genetics, demographics and clini-

cal data, MIR, and PET images. To fulfil the objectives of proposed study, GWAS data from

ADNI1 is accessed where individuals with CN or AD were chosen. A total of 388 subjects are

identified producing 174 cases and 214 controls in the proposed work.

The dataset originally is presented in plink file format with three files: ‘bim’, ‘bed’, and ‘fam’

files. In ‘fam’ file, subject characteristics are recorded. While SNPs (features) characteristics are

stored in the ‘bim’ file including location, name, and allele representation. Finally, ‘bed’ files

contain machine codes that are unreadable to humans and comprise 8-bit codes representing

the genotype codes as well as map the information between fam and bim files. In this study, we

use SNPs as features to classify the individuals into CN or AD cases. Table 1 shows the statistics

Fig 1. A graphical representation of proposed approach for AD and CN classification. First block represents the PLINK analysis in

which quality control procedure and association test is conducted. Second the genotype data convert into one-hot representation. Third

feature selected utilizing Boruta and PCA algorithms. Finally, AD classification is performed using the different feature sets.

https://doi.org/10.1371/journal.pone.0283712.g001

Table 1. Characteristics statistics of Alzheimer’s disease and normal subjects.

Age (mean) Male/Female Years of Education (mode) MMSE (mode) APOE4 (mode) ADAS11 (mean) ADAS13 (mean)

Cases 75.35 92/82 15 23 1 18.11 26.99

Controls 75.66 115/99 16 29 0 5.83 8.98

https://doi.org/10.1371/journal.pone.0283712.t001
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of the dataset, the mean age for both cases and controls around 75 years old. the Mini-mental

State Examination (MMSE) is 30-point questionnaire used measure cognitive impairment, in

the utilised dataset a mode score of 23 points achieved by cases, whereas a score of around 29

achieved by controls. Table 1 also shows that most cases carry at least of copy of APOE4 gene.

Quality control

To filter out unnecessary information from both genetic markers and samples, several tech-

niques have been studied and used in genetic data quality control, with an emphasis on SNP

data. The methods described in this section are best practises for removing individuals and

SNP traits that might induce bias, impede or mask signals, or produce false positive results

[28]. The dataset prepared in the proposed study is reduced to a representative set of SNP char-

acteristics and subject cohort that are more likely to exhibit underlying genetic signals in con-

junction with the phenotype; by eliminating subjects and SNPs that do not meet the

requirements imposed by these procedures. Originally, there are 6,20,901 number of SNPs

that are reduced to 4,87,037 SNPs using operations described in Table 2.

Association test

In case-control studies, the frequency of alleles or genotypes at SNP differs between cases and

controls in a particular population. We use the associations tests to identify the statistically sig-

nificant variations in the frequency of alleles across research participants. These alleles are

used to test for phenotypic relationships. In other words, association analysis is a set of single-

locus statistical tests that investigate each SNP and its potential connection with a certain trait

[29]. In this context, logistic regression is one of the common methods which has been used in

similar works [30, 31] for studying each SNP individually and capturing the linear associations

between SNPs and phenotypes. Analysis GWAS data is challenging due to the high dimension

of features which, comprise hundreds of thousands of SNPs. To overcome this, we utilise an

association test for each SNP, producing significance of association (i.e., p-value) with AD.

GWAS [32] utilises an approximation where significant relationships have a p-value less than

5*10−8, even if a greater number of genetic variants are examined. Such statistically meaningful

results can only be obtained by studying large samples (about 1000 individuals or more).

Table 2. Quality control procedure applied for both samples and genetic markers.

Filtering approach Description Threshold Used

SNPs missingness Missing SNPs in a large percentage of the Individuals

are excluded.

0.02 genotyping rate

Individuals’ missingness Individuals with a high rate of genotype missingness are

excluded.

0.2 genotyping rate

Sex discrepancy Check sex of individuals depending on their X

chromosome homozygosity

An estimate of the X chromosome homozygosity > 0.8 for males and <0.2 for

females.

Autosomes Chromosomes Only selecting SNPs of 1 to 22 Chromosomes -

Minor allele frequency SNPs above a minor allele frequency threshold are

included.

0.05 due to sample size.

Hardy–Weinberg

equilibrium (HWE)

SNPs that deviate from HWE are excluded. SNPs are first filtered out within the controls for HWE p-values of 1e-6, then

in cases for HWE with p-value of 1e-10.

Relatedness Generates a list of persons with relatedness degree

greater than a specified threshold.

employ 0.2 pi-hat threshold.

After including only founders, three pairs were discovered. We eliminate the

person with the lowest call rate.

Population stratification Individuals from different populations present in the

study.

Only non-Hispanic European participants chosen.

https://doi.org/10.1371/journal.pone.0283712.t002
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Therefore, we have selected top 1000 SNPs according to the lowest p-value of logistic regres-

sion. On a genomic scale, Manhattan plots depict the p-values of whole GWAS (see Fig 2). The

P values are given in genomic order by chromosome and chromosomal location (x-axis)

where y-axis value shows the log10 of the p-value. In addition to Manhattan plot, the Quan-

tile-Quantile (QQ) plot is a graphical depiction of the observed p-values’ divergence from the

null hypothesis: observed p-values for each SNP are ordered from biggest to smallest and

shown against predicted values. If the observed values match the predicted values, all points

land on or near the centre line connecting the x- and y-axes (null hypothesis: red line in Fig 3).

Therefore the data is normally distributed.

Following the association test, the genotype data is transformed to binary representation

using one-hot coding [33] and used as input to feature selection algorithms and ML models.

Genotypes of each SNP is converted into a three-dimensional vector replacing ‘1’ for the geno-

type and 0 for the other two as shown in Fig 1. As an example, vector [CC, CT, TT] is trans-

formed into [1,0,0], [0,1,0], and [0,0,1], respectively.

Feature selection

Large datasets such as GWAS, have been gaining popularity in human disease research how-

ever, multi-attribute analysis and complex inter-relationships within multi-dimensional data-

sets, are difficult to be performed using conventional data analysis approaches. Such

challenges limit the usefulness of these datasets. To overcome this challenge, feature selection

has been reported useful particularly for the dimensionality reduction in such datasets. The

reduced set of features preserving the maximum proportion of information from the original

feature space, is useful for the simplicity of machine learning model. As a result, it is increas-

ingly used in many real-world applications, such as gene analysis [34], to obtain relevant fea-

tures by eliminating the useless and redundant information. This furthermore reduces the

computational and storage costs and improving the model’s learning performance [35].

For the feature selection and dimensionality reduction in proposed work, we firstly con-

ducted an association test using logistic regression (as described in Section Association Test)

to calculate the association of each SNPs with the AD. The top 1000 SNPs based on corre-

sponding significance values (i.e., p-value) are retrieved for further analysis. The selected 1000

SNPs are then feed to a composite of feature selection approaches that include Principal Com-

ponent Analysis (PCA) [36] and Boruta algorithm [37], which has been used in various similar

domains [38, 39]. Details of each feature selection method is presented in the following

sections.

a) Principal component analysis. Principal component analysis is one the powerful sta-

tistical method which have been successfully employed in various research studies mainly, for

the dimensionality reduction and feature selection [37]. The main idea behind PCA is

Fig 2. Manhattan plot of GWAS between Alzheimer’s disease and normal controls.

https://doi.org/10.1371/journal.pone.0283712.g002
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straightforward: reduce the number of variables in a data set while retaining information as

much as possible. This entails identifying new variables that are linear functions of attributes

in the original dataset, maximise variance sequentially, and are orthogonal to each other. The

transformed variables are known as principal components (PCs) [40]. In our case, the compo-

nent loadings represent correlation coefficients between SNPs where maximized sum of vari-

ances of the squared loadings is retrieved through the components’ rotations. Importance

measure for the corresponding features in original space (i.e., dataset) can be calculated using

the absolute sum of component rotations [39]. The top-ranked 50 features (out of 1000 SNPs)

selected by the PCA algorithms (as most important) are shown in Fig 4, including rs12498138

located on gene GOLGB1, rs4072374 located in gene RNASEH1, rs2309772 in TENM3,

rs7005164, and gene LOC105375901.

b) Boruta algorithm. The Boruta algorithm is a wrapper method that is based on the Ran-

dom Forest (RF) classification algorithm. The Boruta algorithm use selection criteria for

important factors by eliminating variables that are statistically identified as less relevant than

random probes iteratively. Detailed implementation of the Boruta algorithm can be found in

study [37]. In the proposed study, SNPs with substantially high scores identified by the Boruta

Fig 3. QQ plot of GWAS between Alzheimer’s disease and normal controls. Lambda is close to 1 which means the

points falls within the expected range.

https://doi.org/10.1371/journal.pone.0283712.g003
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algorithm includes: rs17365991 gene TEF, rs8141950 gene PARVB, rs2654986 gene LUNAR1,

and rs2036109 gene ADRA1A. A complete list of important features selected by the algorithm

is presented in S1 Table in S1 File.

c) Hybrid feature selection. While both PCA and Boruta algorithms are commonly used

for the feature selection, the fundamental of mathematical formulations of both algorithms is

different. Combining the outcomes form both algorithms might be useful to filter-out maxi-

mum number of features while simultaneously, retaining maximum information from the

original dataset. For this purpose, we perform a hybrid feature selection as a composite of Bor-

uta and PCA outcomes. In the first step, outcomes from both feature selection algorithms are

sorted with respect to feature ranks (i.e., feature importance). We then selected the intersection

of 1st quartiles of features (i.e., top 25%) that are identified from both Boruta and PCA algo-

rithms, producing 121 of most significant features. A complete list of the commonly selected

features is presented in Table 3. It can be noticed that some of the top-ranked SNPs located in

genes are strongly related to AD such as rs6116375 on gene PRNP, rs2075650 on gene

TOMM40.

The aforementioned features (PCA, Boruta, and composite of both) are then used to train

and validate the multiple ML models for the task of AD classification over unseen instances.

Fig 4. Top-ranked 50 features (out of 1000 SNPs) selected as important, by the PCA algorithm.

https://doi.org/10.1371/journal.pone.0283712.g004
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Proposed Alzheimer’s disease classification

Once the most promising features are identified from the original dataset, we then employ

multiple well-established classification methods, to classify AD that include RF, artificial neu-

ral networks (ANN), and deep ANNs. For the detailed experimental analysis, we use variations

of inputs (i.e., feature combinations) to selected models for efficient classification of AD along

with identification of significant set of features. A detailed description of each classifier with

respect to proposed work, is presented as follows.

a) Random forest for proposed AD classification. Ensemble learning is an effective tech-

nique for combining multiple learning algorithms to improve overall prediction accuracy.

These ensemble techniques have the advantage of alleviating the problem of small sample size

by averaging and incorporating over multiple classification models, to reduce the possibility of

overfitting the training data. As a result, the training dataset can be used more efficiently,

which is important in many biological applications with small sample sizes. Some ensemble

methods, such as RF, are particularly useful for high-dimensional datasets because generating

multiple prediction models, each with a different feature subset, can improve classification

accuracy [41].

Recently, RF has been successfully employed in diverse application areas for both classifica-

tion [42] as well as regression problems [43]. Generally, RF is made up of several decision trees

with the principle of bagging, which combines the operations of bootstrapping and aggrega-

tion. Bootstrapping refers to the process of training each decision tree on a subset of the train-

ing samples, utilizing a subset of the original features, ensuring that each tree is distinct, which

Table 3. List of final feature-set identified as significant using the intersection of selected features from both PCA and Boruta algorithm.

rs6116375_CC rs10176603_TT rs7747741_GG rs4290760_CC rs16864809_TT

rs2654986_TC rs10031325_CC rs701880_CC rs11680332_GG rs7679260_CC

rs11768384_GG rs16889565_GA rs9296691_TC rs628482_GG rs9389952_TT

rs2075650_AA rs2877347_CC rs4953672_CC rs518385_TT rs10804812_CC

rs7342676_CC rs6114605_GA rs10068900_GG rs2577322_CC rs618236_CC

rs4964453_TT rs7618348_CC rs2834714_TT rs11869174_CT rs1945624_AA

rs10790928_TT rs9595108_CC rs6838005_CC rs11733633_AA rs2577322_TT

rs2208322_AA rs17068548_GG rs10514486_CC rs911892_TT rs7807731_TT

rs7519796_AA rs13211072_TT rs7149949_TT rs3812568_AA rs2136613_TT

rs10222715_TT rs6132022_TT rs2725790_CT rs799447_GG rs344783_TT

rs10793982_TT rs793291_AA rs11655031_TT rs17745021_CT rs1495813_CC

rs775879_GG rs3771389_CT rs2833427_CC rs13245564_GG rs9410486_GG

rs4837137_AA rs6695731_CC rs8007000_TT rs2305252_AA rs7096762_AA

rs1789250_AA rs10044783_CC rs17430865_CT rs4472075_AA rs2309777_GG

rs4868468_AA rs17345545_CC rs3815360_CC rs4793902_TT rs9515168_GT

rs11752811_TT rs871049_CC rs17430865_TT rs168825_GG rs6569364_AA

rs2075650_GG rs4953672_AA rs11922179_AA rs6838005_TC rs12988856_TT

rs2697303_AA rs2075650_GA rs1186685_TT rs775879_AA rs1891265_GG

rs362584_AA rs1479884_GG rs7320494_AA rs6903956_AA

rs8000805_GG rs11253696_AA rs7206002_GG rs12480224_AA

rs10879839_TT rs13135230_GG rs367369_TT rs2339298_TT

rs2286343_AA rs10888578_TT rs1328179_TT rs7413155_AC

rs939720_CC rs7999171_GG rs4689705_TT rs9595108_AC

rs7165661_TT rs12312628_CC rs705904_CC rs6929400_CC

rs2867922_TT rs10101666_TT rs9381936_CC rs268909_TT

https://doi.org/10.1371/journal.pone.0283712.t003
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significantly helps in overcoming the problem of the classifier’s variance. Within the aggrega-

tion step, the output of each tree is considered, and the class with the majority votes from the

trees is chosen as the final output. Further details on RF can be found in related work [44]. Fig

5 depicts a sample of single decision tree (with bootstrapped data sample) from the proposed

RF-based AD classification model.

b) Deep wide artificial neural networks for proposed AD classification. Similar to RF,

feed-forward neural networks have been successful in variety of applications within diverse

disciplines [45–47]. It consists of a network of linked neurons with linear or nonlinear transfer

functions that may be used to analysis nonlinear data such as genetics in this study. With only

two layers of neurons, a feed-forward neural network may estimate sensible functions to any

desired degree of precision.

Based on the theoretical concepts in [48], we employ a neural networks with gradient

descent optimization utilising the backpropagation learning approach for binary classification

problems. The neural network is built using input, hidden and output layers that each include

a predetermined number of units (neurons). Various neural networks architectures are

employed in the current work: a Wide Neural Network (WNN) which consist of one hidden

layer with a large number of neurons and Deep Neural network (DNN) consisting of multiple

hidden layers with smaller number of neurons in each layer.

Furthering the artificial neural network concept, a wide and deep neural network (illus-

trated in Fig 6) is a combination of a deep neural network and a linear model based on a small

set of features. Deep learning tends to generalise data patterns, whereas linear models help to

learn the patterns. This type of architecture has been reported useful in similar works such as

cell type classification [49] and recommender systems [50]. The deep component of the net-

work can handle the high-dimensional data, whereas the wide component emphasises the bio-

logical significance of SNPs to AD, by integrating them into the network’s final hidden layer.

For the proposed AD classification (as illustrated in Fig 6), the final set of identified features

(Table 2) are fed to the wide component. For each SNP identified in Table 2, we retrieved

neighbouring SNPs which are then served as an input to the deep component of the network.

Fig 5. Random Forest sub-trees for proposed AD classification using GWAS data. The input to the RF is the

bootstrapped SNPs features. In the first step (bootstrap step) refers to the process of training each tree in RF on a

subset of the training samples. While in the second step (aggregation step) the class with the majority votes from the

trees is chosen as the final output (in above example 2/3 votes are in favour of Normal control).

https://doi.org/10.1371/journal.pone.0283712.g005
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Experiment design

Multiple experiments are conducted using the identified features via proposed hybrid feature

selection (see Section Feature Selection) from the ADNI GWAS dataset, to train the aforemen-

tioned AD classifiers (RF, WNN, and DNN). For the training and testing, we partition the

dataset into 70% and 30% respectively. We further employ the cross-validation (5-CV) for a

fair and reliable evaluation of the proposed AD classifiers’ performances. For all ML classifiers,

the optimal set of hyperparameters are determined using the trial-and-error method and are

detailed in S2 Table in S1 File. Quality control steps and association test are conducted using

PLINK software [51] while ML algorithms are implemented using Scikit-learn python library

[52]. PyPlink library is used to read the genotype data in python [53]. Finally, the neural net-

works implementation is performed with Keras and TensorFlow as backend [54]. With these

configurations and feature sets, following set of experiments are performed in the proposed

study:

Experiment 1 (EXP1): Using intersection of 1st quartile (i.e., top 25%) of features that are

ranked from both Boruta and PCA algorithms. The combined feature set (called Intersec-

tion feature set) is used to train ML algorithms (RF, WNN and DNN) in order to find the

best performing GWAS AD classifier.

Experiment 2 (EXP2): Using top 25% of features ranked by Boruta extracted as a feature set

(called Boruta feature set) for the AD classification using RF, WNN and DNN algorithms.

Experiment 3 (EXP3): Using top 25% of features ranked by PCA extracted as a feature set

(called PCA feature set) for the AD classification using RF, WNN and DNN algorithms.

Experiment 4 (EXP4): In order to evaluate the effect of neighbouring SNPs, for each SNP in the

interaction features set (EXP1), we retrieved the SNP and neighbouring SNPs (6 from each

side) and constructed a new feature space, called neighbouring features set. Using features

from EXP1 as input to the wide component and neighbouring features set as input to the

deep component to train and test the proposed wide and deep model (As shown in Fig 6).

Experiment 5 (EXP5): Using top 25% of features of the logistic regression extracted as a feature

set (called original feature set) for the AD classification using RF, WNN and DNN

algorithms.

Fig 6. Proposed Wide and deep NN for AD classification using GWAS data.

https://doi.org/10.1371/journal.pone.0283712.g006
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Performance evaluation. Performances of the AD classification models is evaluated using

several standard evaluation metrics. Model accuracy (Eq 1) describes how well the model per-

forms across all classes. Using precision (Eq 3), we determine how many predictions of posi-

tive classes are actually positive. Recall (Eq 2), as opposed to precision, indicates how many

positive predictions were missed. The F-score (Eq 4) is calculated by averaging precision and

recall determining the classifier’s accuracy. Furthermore, Receiver Operating Characteristic

curves (ROC) is used as a performance measurement of classification efficiency at different

thresholds. With a higher Area Under the Curve (AUC) value, the model is more effective at

making a distinction between cases (i.e., patients) and controls (i.e., healthy subjects). Finally,

Precision-recall curves (PR) show the trade-off between precision and recall w.r.t. varying

thresholds.

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
ð1Þ

Recall ¼
TP

TPþ FN
ð2Þ

Precision ¼
TP

TP þ FP
ð3Þ

F � score ¼
2∗Precision∗Recall
Precisionþ Recall

ð4Þ

Results and discussion

Following the aforementioned experimental configurations, detailed statistical results and per-

formance measures are retrieved. Particularly, this study is first of its kind to identify and

extract the most promising (as well as substantially reduced in quantity) set of features which

significantly contribute to classification of AD. We identify a number of genes as significantly

related to the AD that are aligned with related literature including rs6116375 on gene PRNP

[55], rs2075650 on gene TOMM40 [56], rs10793982 on gene LAMC3 [57], rs2208322 on gene

NEURL1 and rs7519796 on gene KAZN [58], demonstrating the efficacy of our features selec-

tion approach. Furthermore, we identify some of the potential novel SNPs such as rs2654986

on gene LUNAR1, and rs2208322 on gene NEURL1 that are significantly associated with AD.

A complete list of the significant SNPs identified in proposed study is available in Table 3.

To evaluate the effectiveness of our feature selection process, a RF classifier and ANN with

varying parameter configurations are employed to classify the AD patients. The performance

of the classifiers is presented in Table 4 when evaluated over the unseen subjects using features

set described in EXP1. It can be noticed that regardless of selected ML model, high perfor-

mance measures are achieved. WNN indicates an accuracy and f1-score of 94% and 93%

Table 4. Comparison of ML algorithms for classification of AD and healthy individuals using intersection fea-

tures selected by Boruta and PCA from the top 25% (Exp 1).

Model Accuracy Precision Recall F1

RF 89% 96% 81% 88%

Wide NN 94% 91% 98% 93%

Deep NN 93% 89% 96% 92%

https://doi.org/10.1371/journal.pone.0283712.t004
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respectively followed by a DNN which showed a slightly decline in performance (i.e., 93%).

While RF indicate more deteriorations in performance with 89% accuracy and 88% F1 score,

which is in line with the existing similar work [59], where higher accuracy is reported using

ANN as compared to RF (for preterm birth classification). Oriol et al. [15] employed RF in

classification of AD and CN using GWAS data, where they reported accuracy of 67% (signifi-

cantly lower than proposed approach). Similarly, RF was not the best classifier to discriminate

between AD cases and controls as reported in a similar work [60]. It is also important to note

the performance balance from WNN and DNN (in Table 4) as compared to RF, which indi-

cates more biasedness towards the precision (96%) as compared to recall (81%). The accuracy

and loss curves of the models are available in S1 and S2 Figs in S1 File.

Table 5 summarises outcomes for EXP2 where all classifiers indicated similar performance

when trained and tested over the top-ranked (i.e., 1st quartile) features selected by Boruta algo-

rithm. It can be noticed that the overall accuracy of each model is increased specifically, the

WNN and DNN which indicate 99% accuracies for unseen instances. This clearly indicate the

effectiveness of selected features as well as the model’s configurations.

Table 6 presents the outcomes for EXP3 where the features identified from PCA algorithm

are used to train the ML models. It can be noticed that WNN and DNN models outperformed

the RF producing overall 96% and 94% accuracies as compared to 84% from RF. Likewise, the

performance clearly indicates the balance between recall and precision which is not the case

for RF. Overall, in comparison, the RF demonstrated a notable reduction in performance.

To assess the impact of the neighbouring SNPs (of the identified most important SNPs)

towards the classification of AD, we evaluated the performance of WDNN classifier in EXP4

(Table 8). Despite the performance of WDNN is substantially reduced (around 80%) as com-

pared to EXP1-EXP3, it is still inline or outperforms most of the existing related works as

shown in Table 8, particularly in the domain of GWAS. For the final experiment, we tested the

models’ performances over the original dataset (EXP5 as illustrated on Fig 1) before feature

selection (Table 7). It can be noticed that the classification performance from each model is

nearly as accurate as in EXP2 (Table 4). Likewise, the RF indicates a biased performances in

terms of precision and recall.

ROC and PR curve analysis of the AD classifiers

Figs 7 and 8 show the ROC and PR curves of the ML classifiers’ performances in classifying

AD cases and normal controls. From Fig 7, we can clearly see that WNN and DNN performed

Table 5. Comparison of ML algorithms for classification of AD and healthy individuals using top 25% features

selected by Boruta algorithm (Exp 2).

Model Accuracy Precision Recall F1

RF 92% 99% 84% 91%

Wide NN 99% 99% 99% 99%

Deep NN 99% 99% 99% 99%

https://doi.org/10.1371/journal.pone.0283712.t005

Table 6. Comparison of ML algorithms for classification of AD and healthy individuals using top 25% features

selected by PCA algorithm (Exp 3).

Model Accuracy Precision Recall F1

RF 84% 99% 68% 81%

Wide NN 96% 99% 92% 96%

Deep NN 94% 96% 91% 93%

https://doi.org/10.1371/journal.pone.0283712.t006
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similar in most of the experiments. WNN is the most sufficient classier for AD classification

reaching 100% in terms of both ROC and PR (Fig 7B) when tested on feature selected by Bor-

uta algorithm (EXP2). In case of classifiers’ training evaluation over the intersection feature set

(i.e., EXP1), a performance of 90% or over is achieved in terms of AUC for both ROC and PR

curves (Figs 7A and 8A). The WDNN model (EXP4) shows an 83% (Fig 7D) and 87% (Fig 8D)

AUC for ROC and PR, respectively. These results indicate the efficiency of Boruta algorithms

for feature selection that are useful to detect and classify the AD in individuals.

Comparative analysis

Finally, Table 8 compares the performance of proposed method with existing similar

approaches, towards the classification of AD based on genome-wide data (SNPs). It is evident

that our approach outperforms the Decision tress [60], CNN [61], ensemble models [15], and

LASSO [62]. The proposed approach shows stable performance throughout the evaluation

metrics including ROC. Whereas, the decision tress utilised in reference [60] showed an

increase AUC of 11% comparing to the model’s accuracy. Likewise, our work shows the supe-

riority of Boruta algorithm in selecting the optimal number of features and eliminating the

redundant SNPs, which reflects the high performance in the classification task. The results

indicate that Boruta algorithm is better than other feature selection techniques such as statical

techniques applied in [62]. Moreover, the proposed model uses only 121 features as input to

the WNN as compared to state-of-the-art methods such as [62] which uses over 500 features,

Table 8. Comparison of related work in the literature.

AUC 91% 81% 72% 84% 94% 100% 83%

Prec 80% 91% 99% 79%

Recall 80% 70% 82% 99% 99% 89%

F score 80& 95% 99% 83%

Acc 80% 75% ~70 84% 95% 99% 83%

Feature

No.

145 4000 2500 501 121 747 121 for wide

component and

4697 for deep

component

Feature

selection

Previously

reported SNPs

related to AD

from DiaGeNet

database.

Divided the genome into

nonoverlapping fragments, then used

CNN to select segments. CNN was

run on the selected fragments using a

Sliding Window Association Test to

identify important SNPs.

To find significant SNPs,

used the statistical summary

results from IGAP [23]. The

top 2,500 SNPs were then

chosen as the final feature

set.

Using X2 with

kinship

correction

See section

3.

See section

3.

See section 3.

Dataset ADNI3 ADNI ADNI NIA-LOAD ADNI ADNI ADNI

ML

Model

Gradient boosted

decision trees

1D CNN Ensemble of ML models LASSO WNN

(EXP1)

WNN

(EXP2)

WDNN (EXP4)

Study [60] [61] [15] [62] Proposed

Model 1

Proposed

Model 2

Proposed Model 3

https://doi.org/10.1371/journal.pone.0283712.t008

Table 7. Comparison of ML algorithms for classification of AD and healthy individuals using original features set

(Exp 5).

Model Accuracy Precision Recall F1

RF 91% 99% 81% 89%

Wide NN 99% 99% 98% 99%

Deep NN 99% 99% 98% 98%

https://doi.org/10.1371/journal.pone.0283712.t007
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and CNN-based approach utilising 400 features [61]. This leads to a less noisy, lighter, and

more efficient model as proposed in this study. The identification of fewer contributing fea-

tures to AD may be useful to set a baseline for further analysis and direction in future research.

Discussion

First of all, to the best of authors’ knowledge, the study is first of its kind to examine GWAS

data using a wide and deep neural network approaches. Secondly, using a relatively small

Fig 7. (a) ROC-AUC curve for EXP1, (b) ROC-AUC curve for EXP2, (c) ROC-AUC curve for EXP3, d) ROC-AUC curve for EXP4, (e)

ROC-AUC curve for EXP5.

https://doi.org/10.1371/journal.pone.0283712.g007

Fig 8. (a) PR-AUC curve for EXP1, (b) PR-AUC curve for EXP2, (c) PR-AUC curve for EXP3, d) PR-AUC curve for EXP4, (e) PR-AUC curve

for EXP5.

https://doi.org/10.1371/journal.pone.0283712.g008
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number of identified feature set (only 121 features) using proposed feature selection approach,

the classifying models achieved outstanding performance (Table 4), which reveals the robust-

ness of our feature selection methodology. Furthermore, experimental outcomes show that

using appropriate classifier can improve the accuracy better than increasing the number of fea-

tures (See Table 5). In addition to performance efficiency, experiments 1,2 and 3 show the

strength of neural networks in the existence of complex relations within the dataset. The

results demonstrate the effectiveness of our approach (e.g., via the cross validations) which can

be easily applied to other chronical disease where larger GWAS datasets are available.

Similar to other related studies, when interpreting the findings, some limitations are also

noticed in the proposed work. Firstly, the sample size is relatively small however, this is consist

with other related work that uses the same dataset [15, 17, 62–64] and other work which use

GWAS data with a similar or lower sample size [65, 66]. Secondly, number of features (SNPs)

highly exceeded the number of samples within the original dataset however, we addressed this

issue by substantially reducing the number of features using advanced statistical approaches

and highlighted the significant SNPs.

We also conducted experiments to compare the performance of WNN (one hidden layer

with a large number of neurons) and DNN (multiple hidden layers with smaller number of

neurons in each layer) to explore the implication that architecture selection has in the model

performance. The ANNs have variety of parameters to choose from, including the number of

hidden layers and neurons per layer. These parameters distinguish the network’s architecture

and influence how the model performs. We noticed that in almost all of our experiments,

WNN outperforms the DNN that may be because of the size and nature of the dataset. More

interactions between input variables can be approximated by WNN where DNN are com-

monly used in computer vision and natural language processing problems.

Furthermore, it can be noticed that the WNN and DNN showed better performance than

RF in GWAS domain (Tables 4–6). However, there is a trade-off between model accuracy and

model interpretability. The RF can lead to an interpretable model and extract useful explana-

tion on how the model reached a decision (case or control) which to go beyond simply using a

model to get the best possible predictions. The RF model can produce insights which a human

expert (e.g., physicians) can use to understand how the model help in AD diagnosis through

genetic data. For this purpose, a list of human understandable rules is extracted from the best

performing tree of our RF model as shown in supplementary materials (S3 Table in S1 File).

From the extracted rules, we can infer that if a person has the genotype of CC for SNP

rs705904 and GG for SNP rs799447 or AA for SNP rs11922179, they are less likely to be diag-

nosed with AD. Furthermore, genotype of AA for SNP rs2075650 is highly associated with

controls. On the other hand, a person with genotype AA for SNP rs1789250 or genotype other

than AA for SNP rs2075650 is most likely to be a case of AD.

Conclusion

In the current study, we requested access to human genome wide data from AD neuroimaging

initiative, in order to build a reliable machine learning classifier to classify patient with AD

and normal controls. Both of Boruta and PCA algorithms utilized as feature selectors to reduce

the number of features and identify the most promising set of SNPs. We then conduct detailed

experiments, by training the machine learning models on different features subsets. Wide and

deep learning approaches proposed for classifying AD and non-AD subjects. All models

achieved high performance; wide neural network found to be the best classifier with a stable

performance of 99% accuracy. The outcomes clearly demonstrate the effectiveness of proposed

hybrid feature selection. Based on our findings, there are several future works we recommend
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within the study context. Larger dataset can be used to examine the generalization of these

models. Further analysis is required to investigate the associations of the identified SNPs with

AD. Although of the models used to classify AD patients it can be extended to other chronic

disease.
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